Abstract:
The assessment of seismic vulnerability of buildings in seismically active urban areas is of great importance in terms of engineering, economical and social aspects. In this study an analytical procedure has been developed in order to obtain the vulnerability functions of existing buildings. The building information included over all geometry of the structure, as-built dimensions and configuration of the structural members, complete with reinforcement details of beams and columns, which are extracted from the design dossiers available in the Bolu municipality archives. Totally 120 buildings, 20 from each class, are classified depending on their number of stories ranging from 2 to 7 story and nonlinear response history analysis has been performed in order to obtain damage distributions by using 20 spectrum compatible ground motions. In the first chapter a brief explanation of the role of loss estimation studies in urban planning, urban disaster management and mitigation has been given. In the second chapter, existing building vulnerability relationships have been evaluated and particular examples of studies that have made important contribution to the development are briefly cited. In the third chapter, basic steps of a standard derivation of analytical vulnerability functions are identified and the importance of each step in the process has been explained. In the fourth chapter, the procedure based on real building data has been explained in detail including the ground motion characterization, properties of building data, analytical methods used in the analysis, damage definition and quantification, statistical process and the determination of the vulnerability parameters. Results are presented in the form of lognormal vulnerability curves with respect to spectral acceleration or spectral displacement. In the fifth chapter, the conclusions are presented and the contribution of the study to the existing knowledge in the field has been evaluated