Abstract:
Migraine is a neurovascular pain syndrome affecting nearly 12 per cent of world's population. Migraine decreases the life quality and work efficiency of patients drastically, and causes billions of dollars of economical loss to countries. Therefore, accurate diagnosis and treatment of migraine is important which is only possible by understanding its dynamics. This study aims to observe the differences cerebrovascular dynamics of migraine patients and healthy subjects by measuring their cerebrovascular responses during breath hold task by using functional near infrared spectroscopy. The subjects' responses are modeled using Gaussian functions and the obtained model parameters of migraineurs and healthy subjects are compared. All amplitude parameters of migraineurs were found to be approximately half of those for healthy subjects supporting that migraineurs' responses are suppressed for not only Hb dynamics but also HbO2 dynamics. Moreover, migraineous responses were found to be unpredictable as opposed to healthy subjects suggesting that migraineurs have an inherent incapability for cerebral autoregulation. Time to peak values of migraineurs' Hb are found to precede the healthy subjects at least eight seconds while their HbO2 values lagged around nine seconds. Our findings indicate that regulation of cerebral dynamics of migraine patients during breath hold task is significantly different than the healthy subjects.