Arşiv ve Dokümantasyon Merkezi
Dijital Arşivi

Noise robust real-time focus detection with deep learning for ultra-fast laser micromachining

Basit öğe kaydını göster

dc.contributor Graduate Program in Physics.
dc.contributor.advisor Elahi, Parviz.
dc.contributor.author Polat, Can.
dc.date.accessioned 2023-10-15T08:03:07Z
dc.date.available 2023-10-15T08:03:07Z
dc.date.issued 2022
dc.identifier.other PHYS 2022 P66
dc.identifier.uri http://digitalarchive.boun.edu.tr/handle/123456789/19819
dc.description.abstract In this thesis, different types of machine learning models are provided for ultra-fast laser micromachining system to actively control the focusing of light on the processing material by detecting the reflected light. These different types of models are tested for both experimental and theoretical approaches. For the experimental approach, four different machine learning models are explored. These models were tested for mirror, silicon, steel, and copper samples. The proposed machine learning models offer real-time control with over 90\% accuracy. For the simulation, noise at the material surface and the detection system are considered. The noise simulation, including the laser micromachining system, is done using Fourier optics and signal processing. Noise levels at the material surface are determined by laser scanning microscope measurements of experimental samples, and the commercial detection camera noises are considered for the detection noise. Convolutional neural network models are used for focus control in the simulation. Depending on the noise level, the proposed model achieves above 95\% accuracy.
dc.publisher Thesis (M.S.) - Bogazici University. Institute for Graduate Studies in Science and Engineering, 2022.
dc.subject.lcsh Lasers -- Industrial applications.
dc.subject.lcsh Deep learning (Machine learning)
dc.title Noise robust real-time focus detection with deep learning for ultra-fast laser micromachining
dc.format.pages xiv, 96 leaves


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

Dijital Arşivde Ara


Göz at

Hesabım