Arşiv ve Dokümantasyon Merkezi
Dijital Arşivi

Money laundering detection in cryptocurrency networks

Basit öğe kaydını göster

dc.contributor Graduate Program in Industrial Engineering.
dc.contributor.advisor Ekim, Tınaz.
dc.contributor.author Erdem, Elif Emine.
dc.date.accessioned 2024-03-12T14:52:05Z
dc.date.available 2024-03-12T14:52:05Z
dc.date.issued 2022
dc.identifier.other IE 2022 E74
dc.identifier.uri http://digitalarchive.boun.edu.tr/handle/123456789/21453
dc.description.abstract This study aims to develop scalable methods to detect suspicious wallets using historical transaction data in cryptocurrency networks such as Ethereum and Bitcoin. Different transaction networks are generated for each wallet data set using the illicit wallets dispersed around the internet. Egonet-dependent and independent features are used with a range of machine learning techniques, including logistic regression (LR), random forest (RF), and XGBoost (XGB), to predict illicit wallets. Firstly, we analyze performance of models to detect suspicious wallets in the two datasets that include suspicious bitcoin mixer services wallets such as Bitcoinfog and Helix. The area under the ROC curve value (AUC) is over 99% for XGB models. We observe that models perform better on Helix wallets than BitcoinFog wallets in terms of precision, recall, f1 score, and AUC. Secondly, we notice that egonet dependent features do not significantly improve the models’ performances. Hence, best- performing models have only egonet independent features. Thirdly, on Bitcoin datasets that do not use any mixer services, we obtain over 99% AUC. Although the performance of the models is similar in these three datasets, dominant features in terms of feature importance measure are different between the datasets including wallets using mixer services (Helix, Bitcoinfog) and the other (Bitcoin). Lastly, utilizing the same feature set as we do on Bitcoin, Bitcoinfog and Helix datasets, we train the same machine learning models on the Ethereum dataset and obtain 96% AUC. We repeated the tests with varying degrees of class imbalance to simulate real-life situations. We observe a decline in AUC up to 0.10 together with the increasing severity of the class imbalance.
dc.format.extent 111:001:PDF:b2795865:038472:0:0:0:0:0:0tFull text electronic versionvn
dc.publisher Thesis (M.S.) - Bogazici University. Institute for Graduate Studies in Science and Engineering, 2022.
dc.subject.lcsh Ethereum (Distributed computing platform)
dc.subject.lcsh Bitcoin.
dc.subject.lcsh Cryptocurrencies.
dc.title Money laundering detection in cryptocurrency networks
dc.format.pages xviii, 94 leaves


Bu öğenin dosyaları

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

Dijital Arşivde Ara


Göz at

Hesabım